首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   10篇
  2023年   4篇
  2022年   1篇
  2021年   10篇
  2020年   5篇
  2019年   5篇
  2018年   11篇
  2017年   9篇
  2016年   9篇
  2015年   11篇
  2014年   16篇
  2013年   8篇
  2012年   17篇
  2011年   18篇
  2010年   4篇
  2009年   5篇
  2008年   7篇
  2007年   9篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   4篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有186条查询结果,搜索用时 281 毫秒
181.
Abstract The amiE gene of Brevibacterium sp. R312 encoding wide spectrum amidase was isolated by complementation of a Brevibacterium sp. mutant using a plasmid gene bank of chromosomal DNA. The amiE structural gene and its promoter were localized on a 1.8-kb fragment by subsequent subcloning and complementation studies. In Brevibacterium sp., the investigation of amidase activities related to one copy of the gene suggested that the regulation of the amiE gene expression was under negative control. High expression levels have been obtained in Brevibacterium sp. and, after substitution of the amiE promoter by the tac promoter, in Escherichia coli .  相似文献   
182.
The work reported herein describes the synthesis of a new series of anti-inflammatory pyrazolyl thiazolones. In addition to COX-2/15-LOX inhibition, these hybrids exerted their anti-inflammatory actions through novel mechanisms. The most active compounds possessed COX-2 inhibitory activities comparable to celecoxib (IC50 values of 0.09–0.14 µM) with significant 15-LOX inhibitory activities (IC50s 1.96 to 3.52 µM). Upon investigation of their in vivo anti-inflammatory activities and ulcerogenic profiles, these compounds showed activity patterns equivalent or more superior to diclofenac and/or celecoxib. Intriguingly, the most active compounds were more effective than diclofenac in suppressing monocyte-to-macrophage differentiation and inflammatory cytokine production by activated macrophages, as well as their ability to induce macrophage apoptosis. The latter finding potentially adds a new dimension to the previously reported anti-inflammatory mechanisms of similar compounds. These compounds were effectively docked into COX-2 and 15-LOX active sites. Also, in silico predictions confirmed the appropriateness of these compounds as drug-like candidates.  相似文献   
183.
The adenosine transporter 1 (ENT1) transports nucleosides, such as adenosine, and cytotoxic nucleoside analog drugs. ENT1 is well established to play a role in adenosinergic signaling in the cardiovascular system by modulating adenosine levels. Moderate ethanol consumption is cardioprotective and underlying mechanisms of action are not clear although adenosinergic signaling has been implicated. Here, we show that ethanol (5–200 mM) significantly reduces ENT1-dependent [3H] 2-chloroadenosine uptake (by up to 27 %) in the cardiomyocyte cell line, HL-1. Inhibition or absence of ENT1 is known to be cardioprotective, suggesting that the interaction of ethanol with ENT1 may promote adenosinergic cardioprotective pathways in the cardiovasculature. Ethanol sensitivity of adenosine uptake is altered by pharmacological activation of PKA and PKC. Primary cardiomyocytes from PKCε-null mice have significantly greater sensitivity to inhibition (by approximately 37 %) of adenosine uptake by ethanol than controls. These data suggest that the presence of ethanol may compromise ENT1-dependent nucleoside analog drug cytotoxicity, and indeed, ethanol (5 mM) reduces the cytotoxic effects of gemcitabine (2 nM), an anti-cancer drug, in the human cancer cell line, HTB2. Thus, the pharmacological inhibition of ENT1 by ethanol may contribute to ethanol-dependent cardioprotection but compromise gemcitabine cytotoxicity.  相似文献   
184.
185.
Potential soil acidification impacts of a proposed natural gas‐fired combined cycle power plant were assessed using an integrated approach coupling an atmospheric deposition model with soil acidification quantification. The deposition model was used to estimate the rates of nitrogen oxide (NOx) deposition on the air‐soil boundary. The expected changes in the soil column were then predicted by utilizing mechanistic and experimental methods, and the number of years required to reach critical pH values were predicted using the two methods mentioned above under different rates of acidic deposition. The number of years predicted by the mechanistic modeling approach was lower for all soils exhibiting calcareous character.  相似文献   
186.
The aldehyde dehydrogenases (ALDHs) are a superfamily of multimeric enzymes which catalyse the oxidation of a broad range of aldehydes into their corresponding carboxylic acids with the reduction of their cofactor, NAD or NADP, into NADH or NADPH. At present, the only known structures concern NAD-dependent ALDHs. Three structures are available in the Protein Data Bank: two are tetrameric and the other is a dimer. We solved by molecular replacement the first structure of an NADP-dependent ALDH isolated from Streptococcus mutans, in its apo form and holo form in complex with NADP, at 1.8 and 2.6 A resolution, respectively. Although the protein sequence shares only approximately 30 % identity with the other solved tetrameric ALDHs, the structures are very similar. However, a large local conformational change in the region surrounding the 2' phosphate group of the adenosine moiety is observed when the enzyme binds NADP, in contrast to the NAD-dependent ALDHs.Structure and sequence analyses reveal several properties. A small number of residues seem to determine the oligomeric state. Likewise, the nature (charge and volume) of the residue at position 180 (Thr in ALDH from S. mutans) determines the cofactor specificity in comparison with the structures of NAD-dependent ALDHs. The presence of a hydrogen bond network around the cofactor not only allows it to bind to the enzyme but also directs the side-chains in a correct orientation for the catalytic reaction to take place. Moreover, a specific part of this network appears to be important in substrate binding. Since the enzyme oxidises the same substrate, glyceraldehyde-3-phosphate (G3P), as NAD-dependent phosphorylating glyceraldehyde-3-phosphate dehydrogenases (GAPDH), the active site of GAPDH was compared with that of the S. mutans ALDH. It was found that Arg103, Arg283 and Asp440 might be key residues for substrate binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号